Chapter 6: Spectrum

♦ 1. Deviation by a Prism

- When light enters a prism, it **deviates** due to different speeds in different media.
- Total deviation $(\delta) = \delta_1 + \delta_2$.
- Depends on:
 - Angle of incidence
 - Angle of prism (A)
 - Refractive index (μ)

♦ 2. Dependence of Deviation on Colour

- Light of shorter wavelength (violet) deviates more.
- Red light ($\lambda \approx 8000 \text{ Å}$) deviates least, violet ($\lambda \approx 4000 \text{ Å}$) deviates most.

♦ 3. Dispersion and Spectrum

- **Dispersion**: Splitting of white light into 7 colours.
- **Spectrum**: Band of colours (VIBGYOR).
- Caused due to different refractive indices for different wavelengths.
- Takes place only at the first surface of the prism.
- Refraction occurs at both surfaces, but separation increases at the second.

◆ 4. Recombination of Colours

- Using two prisms, dispersed light can be recombined to form white light again.
- Proves colours come from white light, not from the prism.

♦ 5. Electromagnetic Spectrum

- Visible light is only a small part of the EM spectrum.
- Invisible spectrum:
 - o **Beyond red**: Infrared → Microwaves → Radio waves (increasing wavelength)
 - o **Beyond violet**: Ultraviolet \rightarrow X-rays \rightarrow Gamma rays (decreasing wavelength)

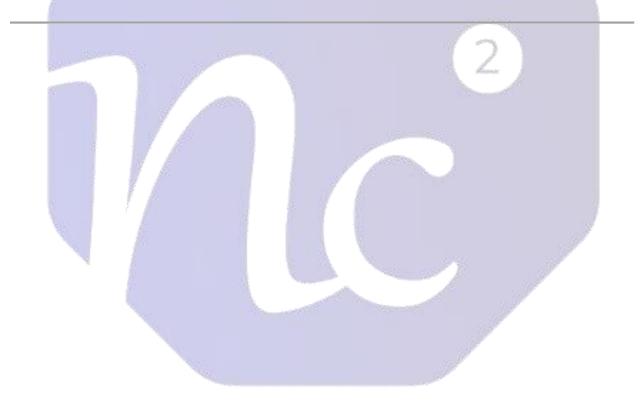
♦ 6. Properties of EM Waves

- Travel at 3×10^8 m/s in vacuum.
- Transverse, can reflect and refract.
- Not affected by electric or magnetic fields.
- Relation: $\mathbf{c} = \mathbf{v}\lambda$

♦ 7. Ultraviolet (UV) Radiations

- Source: Sunlight, arc lamps.
- Absorbed by glass, pass through quartz.
- Causes fluorescence and skin hazards.
- Uses:
 - Sterilization
 - Detecting purity
 - Vitamin D production

♦ 8. Infrared (IR) Radiations


- Source: Hot bodies, filament lamps.
- Detected via heat sensors.
- Penetrates fog, used in night photography.
- Uses:
 - Therapeutic applications
 - Remote controls
 - o Military communication

♦ 9. Scattering of Light

- Discovered by Rayleigh.
- Scattering: Light absorbed and re-emitted by particles in the atmosphere.

◆ 10. Applications of Scattering

- 1. Red Sun at sunrise/sunset: Red scattered least.
- 2. White sky at noon: Minimal scattering.
- 3. Blue sky: Blue scattered more.
- 4. Black sky on Moon: No atmosphere → no scattering.
- 5. White clouds: All colours scattered equally.
- 6. **Red light in signals**: Least scattering \rightarrow longest visibility.

